
DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

IP-429-II
ARINC 429 Interface

1-4 Transmitters
2-8 Receivers

Driver Documentation

Developed with Windows Driver Foundation Ver1.9

Manual Revision A
Corresponding Hardware: Revision A/B

10-2007-0501/2
FLASH revision A1

 Embedded Solutions Page 2 of 25

IP-429II

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
831-457-8891
FAX: 831-457-4793

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and
the recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor
its contents revealed in any manner or to any person except to
meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves
the right to make improvements or changes in the product
described in this document at any time and without notice.
Furthermore, Dynamic Engineering assumes no liability arising
out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without
the express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with IP Module
carriers and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©2015-2016 by Dynamic Engineering.
Trademarks and registered trademarks are owned by their
respective manufactures.

 Embedded Solutions Page 3 of 25

Table of Contents

INTRODUCTION 5

Driver Installation 7

Windows 7 Installation 7

Driver Startup 8

IO Controls 8
IOCTL_IP_429II_GET_INFO 9
IOCTL_IP_429II_SET_IP_CONTROL 9
IOCTL_IP_429II_GET_IP_CONTROL 10
IOCTL_IP_429II_REGISTER_EVENT 10
IOCTL_IP_429II_ENABLE_INTERRUPT 11
IOCTL_IP_429II_DISABLE_INTERRUPT 11
IOCTL_IP_429II_FORCE_INTERRUPT 11
IOCTL_IP_429II_SET_VECTOR 11
IOCTL_IP_429II_GET_VECTOR 11
IOCTL_IP_429II_SET_BASE0_CONFIG 12
IOCTL_IP_429II_GET_BASE0_CONFIG 12
IOCTL_IP_429II_SET_BASE1_CONFIG 12
IOCTL_IP_429II_GET_BASE1_CONFIG 13
IOCTL_IP_429II_SET_BASE2_CONFIG 13
IOCTL_IP_429II_GET_BASE2_CONFIG 13
IOCTL_IP_429II_SET_BASE3_CONFIG 14
IOCTL_IP_429II_GET_BASE3_CONFIG 14
IOCTL_IP_429II_GET_VERSION 14
IOCTL_IP_429II_GET_ISR_STATUS 15
IOCTL_IP_429II_GET_INT_STATUS 15
IOCTL_IP_429II_SET_PAR_DATA 15
IOCTL_IP_429II_GET_PAR_DATA 16
IOCTL_IP_429II_GET_TIMESTAMP 16
IOCTL_IP_429II_SET_TXD_DATA_DEV1 16
IOCTL_IP_429II_GET_RXD_DATA_DEV1_1 17
IOCTL_IP_429II_GET_RXD_DATA_DEV1_2 17
IOCTL_IP_429II_SET_CNTL_DEV1 17
IOCTL_IP_429II_SET_TXD_32_DEV1 18
IOCTL_IP_429II_GET_RXD_32_DEV1_1 18
IOCTL_IP_429II_GET_RXD_32_DEV1_2 18
IOCTL_IP_429II_SET_TXD_DATA_DEV2 18
IOCTL_IP_429II_GET_RXD_DATA_DEV2_1 19
IOCTL_IP_429II_GET_RXD_DATA_DEV2_2 19
IOCTL_IP_429II_SET_CNTL_DEV2 19
IOCTL_IP_429II_SET_TXD_32_DEV2 20

 Embedded Solutions Page 4 of 25

IOCTL_IP_429II_GET_RXD_32_DEV2_1 20
IOCTL_IP_429II_GET_RXD_32_DEV2_2 20
IOCTL_IP_429II_SET_TXD_DATA_DEV3 20
IOCTL_IP_429II_GET_RXD_DATA_DEV3_1 21
IOCTL_IP_429II_GET_RXD_DATA_DEV3_2 21
IOCTL_IP_429II_SET_CNTL_DEV3 21
IOCTL_IP_429II_SET_TXD_32_DEV3 22
IOCTL_IP_429II_GET_RXD_32_DEV3_1 22
IOCTL_IP_429II_GET_RXD_32_DEV3_2 22
IOCTL_IP_429II_SET_TXD_DATA_DEV4 22
IOCTL_IP_429II_GET_RXD_DATA_DEV4_1 23
IOCTL_IP_429II_GET_RXD_DATA_DEV4_2 23
IOCTL_IP_429II_SET_CNTL_DEV4 23
IOCTL_IP_429II_SET_TXD_32_DEV4 24
IOCTL_IP_429II_GET_RXD_32_DEV4_1 24
IOCTL_IP_429II_GET_RXD_32_DEV1_2 24

WARRANTY AND REPAIR 25

Service Policy 25
Support 25

For Service Contact: 25

 Embedded Solutions Page 5 of 25

Introduction
The Ip429II driver is a Windows device driver for the IP-Test Industry-pack (IP) module
from Dynamic Engineering. This driver was developed with the Windows Driver
Foundation version 1.9 (WDF) from Microsoft, specifically the Kernel-Mode Driver
Framework (KMDF).

The Ip429II driver package has two parts. The driver is installed into the Windows®
OS, and the User Application “UserApp” executable.

The driver is delivered as installed or executable items to be used directly or indirectly
by the user. The UserApp code is delivered in source form [C] and is for the purpose of
providing a reference to using the driver.

UserApp is a stand-alone code set with a simple, and powerful menu plus a series of
“tests” that can be run on the installed hardware. Each of the tests execute calls to the
driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing.
The software is used for manufacturing test at Dynamic Engineering.

The test software can be ported to your application to provide a running start. It is
recommended to port the Base Reg2 or Parallel Port tests to your application to get
started. The tests are simple and will quickly demonstrate the end-to-end operation of
your application making calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of
the system. The test suite is designed to accommodate up to 5 boards. The number of
boards can be expanded. See Main.c to increase the number of handles.

The hardware manual defines the pinout, the bitmaps and detailed configurations for
each feature of the design. The driver handles all aspects of interacting with the
hardware. For added explanations about what some of the driver functions do, please
refer to the hardware manual.

We strive to make a useable product, and while we can guarantee operation we can’t
foresee all concepts for client implementation. If you have suggestions for extended
features, special calls for particular set-ups or whatever please share them with us,
[engineering@dyneng.com] and we will consider and in many cases add them.

 Embedded Solutions Page 6 of 25

IP-429-II has a Spartan2 Xilinx FPGA to implement the IP Interface, protocol control
and status for the IO. The main feature of the design are the 429 interface devices.

When the IP-429-II board is recognized by the IP Carrier Driver, the carrier driver will
start the IP429II driver which will create a device object for the board. If more than one
is found additional copies of the driver are loaded. The carrier driver will load the info
storage register on the IP-429-II with the carrier switch setting and the slot number of
the IP-429-II device. From within the IP429II driver the user can access the switch and
slot information to determine the specific device being accessed when more than one
are installed. In addition the driver determines the type of IP-429-II installed (-1, -2, -3,
-4). The number of channels is reported in the test menu header and is available from
the driver.

The reference software application has a loop to check for devices. The number of
devices found, the locations, and device count are printed out at the top of the menu.

IO Control calls (IOCTLs) are used to configure the board and read status. Read and
Write calls are used to move data in and out of the device.
Note
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the IP-429-II user manual (also
referred to as the hardware manual).

 Embedded Solutions Page 7 of 25

Driver Installation
There are several files provided in each driver package. These files include
Ip429II.sys, Ip429IIPublic.h, IpPublic.h, WdfCoInstaller01009.dll, IpDevices.inf and
IpDevices.cat.

Ip429IIPublic.h and IpPublic.h are C header files that define the Application Program
Interface (API) to the driver. These files are required at compile time by any application
that wishes to interface with the driver, but are not needed for driver installation.

Note: Other IP module drivers are included in the package since they were all signed
together and must be present to validate the digital signature. These other IP module
driver files must be present when the Ip429II driver is installed, to verify the digital
signature in IpDevices.cat, otherwise they can be ignored.

Warning: The appropriate IP carrier driver must be installed before any IP modules can
be detected by the system.

Windows 7 Installation
Copy IpDevices.inf, IpDevices.cat, WdfCoInstaller01009.dll, Ip429II.sys and the other
IP module drivers to a removable memory device or other accessible location as
preferred.

With the IP hardware installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an item for each IP module installed on the IP

carrier. The label for a module installed in the first slot of the first PCIe3IP carrier
would read PcieCar0 IP Slot A*.

• Right-click on the first device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the memory device or other location prepared above.
• Select Next. The Ip429II device driver should now be installed.
• Select Close to close the update window.
• Right-click on the remaining IP slot icons and repeat the above procedure as
necessary.

* If the [Carrier] IP Slot [x] devices are not displayed, click on the Scan for hardware

changes icon on the Device Manager tool-bar.

 Embedded Solutions Page 8 of 25

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a speci fic board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in Ip429IIPublic.h.

The main.c file provided with the user test software can be used as an example to show
how to obtain a handle to an Ip429II device.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single module. IOCTLs are called using the
Win32 function DeviceIoControl() (see below), and passing in the handle to the device
opened with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

 Embedded Solutions Page 9 of 25

The IOCTLs defined for the Ip429II driver are described below:

IOCTL_IP_429II_GET_INFO
Function: Returns the driver and firmware revisions, module instance number and location
and other information.
Input: None
Output: DRIVER_IP_DEVICE_INFO structure
Notes: This call does not access the hardware, only stored driver parameters. NewIpCntl
indicates that the module’s carrier has expanded slot control capabilities. See the definition of
DRIVER_IP_DEVICE_INFO below.

 // Driver version and instance/slot information
typedef struct _DRIVER_IP_DEVICE_INFO {
 USHORT DriverRev;
 USHORT FirmwareRev;
 USHORT FirmwareRevMin;
 USHORT InstanceNum;
 UCHAR CarrierSwitch;
 UCHAR CarrierSlotNum;
 BOOLEAN NewIpCntl;
 WCHAR LocationString[IP_LOC_STRING_SIZE];
} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;

IOCTL_IP_429II_SET_IP_CONTROL
Function: Sets various control parameters for the IP slot the module is installed in.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Controls the IP clock speed, interrupt enables and data manipulation options for
the IP slot that the board occupies. See the definition of IP_SLOT_CONTROL below.
For more information refer to the IP carrier hardware manual.

typedef struct _IP_SLOT_CONTROL {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

 Embedded Solutions Page 10 of 25

IOCTL_IP_429II_GET_IP_CONTROL
Function: Returns control/status information for the IP slot the module is installed in.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot control parameters set in the previous call as well as status
information for the IP slot that the board occupies. See the definition of
IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
 // Slot Status
 BOOLEAN IpInt0En;
 BOOLEAN IpInt1En;
 BOOLEAN IpBusErrIntEn;
 BOOLEAN IpInt0Actv;
 BOOLEAN IpInt1Actv;
 BOOLEAN IpBusError;
 BOOLEAN IpForceInt;
 BOOLEAN WrBusError;
 BOOLEAN RdBusError;
} IP_SLOT_STATE, *PIP_SLOT_STATE;

IOCTL_IP_429II_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a system
pointer to the event and signals the event when an interrupt is serviced. The user
interrupt service routine waits on this event, allowing it to respond to the interrupt. In
order to un-register the event, set the event handle to NULL while making this call.

 Embedded Solutions Page 11 of 25

IOCTL_IP_429II_ENABLE_INTERRUPT
Function: Sets the master interrupt enable.
Input: None
Output: None
Notes: Sets the master interrupt enable, leaving all other bit values in the base register
unchanged. This IOCTL is used in the user interrupt processing function to re-enable
the interrupts after they were disabled in the driver ISR. This allows the driver to set
the master interrupt enable without knowing the state of the other base configuration
bits.

IOCTL_IP_429II_DISABLE_INTERRUPT
Function: Clears the master interrupt enable.
Input: None
Output: None
Notes: Clears the master interrupt enable, leaving all other bit values in the base
register unchanged. This IOCTL is used when interrupt processing is no longer
desired.

IOCTL_IP_429II_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: IP_429II_INT_SEL structure
Output: None
Notes: Causes an interrupt to be asserted on the IP bus using either of the two IP
interrupt lines. This IOCTL is used for development, to test interrupt processing.

typedef struct _IP_429II_INT_SEL {
 BOOLEAN IntSet0;
 BOOLEAN IntSet1;
} IP_429II_INT_SEL, *PIP_429II_INT_SEL;

IOCTL_IP_429II_SET_VECTOR
Function: Writes an 8 bit value to the interrupt vector register.
Input: UCHAR
Output: None
Notes: Required when used in non auto-vectored systems.

IOCTL_IP_429II_GET_VECTOR
Function: Returns a stored vector value.
Input: None
Output: UCHAR

 Embedded Solutions Page 12 of 25

Notes:

IOCTL_IP_429II_SET_BASE0_CONFIG
Function: Sets configuration parameters in the IP base 0 control register.
Input: IP_429II_BASE0_CONFIG structure
Output: None
Notes: See the definition of IP_429II_BASE0_CONFIG below. Bit definitions can be
found under ‘_BASE_REG0’ section under Register Definitions in the Hardware
manual.

typedef struct _IP_429II_BASE0_CONFIG {
 BOOLEAN IpClock32;
 BOOLEAN ForceInt;
 BOOLEAN ClrTimeStamp;
 BOOLEAN TxEnable1;
 BOOLEAN TxEnable2;
 BOOLEAN TxEnable3;
 BOOLEAN TxEnable4;
} IP_429II_BASE0_CONFIG, *PIP_429II_BASE0_CONFIG;

IOCTL_IP_429II_GET_BASE0_CONFIG
Function: Returns the configuration of the IP base 0 control register.
Input: None
Output: IP_429II_BASE0_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_IP_429II_SET_BASE1_CONFIG
Function: Sets configuration parameters in the IP base 1 control register.
Input: IP_429II_BASE1_CONFIG structure
Output: None
Notes: See the definition of IP_429II_BASE1_CONFIG below. Bit definitions can be
found under ‘_BASE_REG1’ section under Register Definitions in the Hardware
manual.

typedef struct _IP_429II_BASE1_CONFIG{
 BOOLEAN DbCen1;
 BOOLEAN DbCen2;
 BOOLEAN DbCen3;
 BOOLEAN DbCen4;
 BOOLEAN Enable429n1;
 BOOLEAN Enable429n2;
 BOOLEAN Enable429n3;
 BOOLEAN Enable429n4;
} IP_429II_BASE1_CONFIG, *PIP_429II_BASE1_CONFIG;

 Embedded Solutions Page 13 of 25

IOCTL_IP_429II_GET_BASE1_CONFIG
Function: Returns the configuration of the IP base 1 control register.
Input: None
Output: IP_429II_BASE1_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_IP_429II_SET_BASE2_CONFIG
Function: Sets configuration parameters in the IP base 2 control register.
Input: IP_429II_BASE2_CONFIG structure
Output: None
Notes: See the definition of IP_429II_BASE2_CONFIG below. Bit definitions can be
found under ‘_BASE_REG2’ section under Register Definitions in the Hardware
manual.

typedef struct _IP_429II_BASE2_CONFIG{
 BOOLEAN HighLow1;
 BOOLEAN HighLow2;
 BOOLEAN HighLow3;
 BOOLEAN HighLow4;
} IP_429II_BASE2_CONFIG, *PIP_429II_BASE2_CONFIG;

IOCTL_IP_429II_GET_BASE2_CONFIG
Function: Returns the configuration of the IP base 2 control register.
Input: None
Output: IP_429II_BASE2_CONFIG structure
Notes: Returns the values set in the previous call.

 Embedded Solutions Page 14 of 25

IOCTL_IP_429II_SET_BASE3_CONFIG
Function: Sets configuration parameters in the IP base 3 control register.
Input: IP_429II_BASE3_CONFIG structure
Output: None
Notes: See the definition of IP_429II_BASE3_CONFIG below. Bit definitions can be
found under ‘_BASE_REG3’ section under Register Definitions in the Hardware
manual.

typedef struct _IP_429II_BASE3_CONFIG{
 BOOLEAN IntEnRx1;
 BOOLEAN IntEnRx2;
 BOOLEAN IntEnRx3;
 BOOLEAN IntEnRx4;
 BOOLEAN IntEnTx1;
 BOOLEAN IntEnTx2;
 BOOLEAN IntEnTx3;
 BOOLEAN IntEnTx4;
} IP_429II_BASE3_CONFIG, *PIP_429II_BASE3_CONFIG;

IOCTL_IP_429II_GET_BASE3_CONFIG
Function: Returns the configuration of the IP base 3 control register.
Input: None
Output: IP_429II_BASE3_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_IP_429II_GET_VERSION
Function: Returns the IP429II version (1, 2, 3, or 4) as well as the driver flash minor
and major revisions.
Input: None
Output: IP_429II_VESION structure
Notes: See the definition of IP_429II_VERSION below. Definitions can be found under
the ‘_STATUS1’ section under Register Definitions in the Hardware manual.

typedef struct _IP_429II_VERSION {
 UCHAR version;
 UCHAR minorFlashRev;
 UCHAR majorFlashRev;
} IP_429II_VERSION, *PIP_429II_VERSION;

 Embedded Solutions Page 15 of 25

IOCTL_IP_429II_GET_ISR_STATUS
Function: Interrupt status, and vector read in the ISR from the last user interrupt.
Input: None
Output: IP_429II_ISR_STAT
Notes: Returns the interrupt status that was read in the interrupt service routine of the
last interrupt caused by one of the enabled channel interrupts.

typedef struct _IP_429II_ISR_STAT {
 UCHAR RxDevStatus;
 UCHAR TxDevStatus;
 USHORT InterruptStatus; // stored Interrupt status from ISR
 USHORT InterruptVector; // stored Interrupt vector from ISR
} IP_429II_ISR_STAT, *PIP_429II_ISR_STAT;

IOCTL_IP_429II_GET_INT_STATUS
Function: Returns the current interrupt status.
Input: None
Output: IP_429II_INT_STAT
Notes:

typedef struct _IP_429II_INT_STAT

{
 USHORT RxStatus; // current RxStatus
 USHORT TxStatus; // current TxStatus
} IP_429II_INT_STAT, *PIP_429II_INT_STAT;

IOCTL_IP_429II_SET_PAR_DATA
Function: Write to TTL Parallel Port
Input: IP_429II_PARA_DATA
Output: None
Notes: Lower 4 bits are read writeable. See the definition of IP_429II_PARA_DATA
below. Bit definitions can be found under ‘_Parallel’ section under Register Definitions
in the Hardware manual.

typedef struct _IP_429II_PARA_DATA
{
 BOOLEAN Pio_0;
 BOOLEAN Pio_1;
 BOOLEAN Pio_2;
 BOOLEAN Pio_3;
 BOOLEAN Pi_4;
 BOOLEAN Pi_5;
 BOOLEAN Pi_6;
 BOOLEAN Pi_7;
 USHORT ReadBack;

 Embedded Solutions Page 16 of 25

} IP_429II_PARA_DATA, *PIP_429II_PARA_DATA;

IOCTL_IP_429II_GET_PAR_DATA
Function: Read Parallel Data plus read-back of written data
Input: none
Output: IP_429II_PARA_DATA
Notes: 7-0 = Parallel data in, 15-8 = lower byte from register. Returns the values set
in the previous call.

Please note that the IOCTL’s defined for devices not installed should not be used.

IOCTL_IP_429II_GET_TIMESTAMP
Function: Read the timestamp for each of the devices
Input: none
Output: IP_429II_TS_DEV
Notes: The counter is 32 bits wide and counts up at a rate of 1MHz. When the receive
interrupt for a particular channel is detected, the count is stored into the time tag
register. See the definition of IP_429II_TS_DEV below. Bit definitions can be found
under ‘_CHXX_TS’ section under Register Definitions in the Hardware manual.

typedef struct _IP_429II_TS_DEV
{
 ULONG Dev1Ch1;
 ULONG Dev1Ch2;
 ULONG Dev2Ch1;
 ULONG Dev2Ch2;
 ULONG Dev3Ch1;
 ULONG Dev3Ch2;
 ULONG Dev4Ch1;
 ULONG Dev4Ch2;
} IP_429II_TS_DEV, *PIP_429II_TS_DEV;

IOCTL_IP_429II_SET_TXD_DATA_DEV1
Function: Write to Device 1 upper and lower transmit data
Input: IP_429II_TX_DEV
Output: none
Notes: See the definition of IP_429II_TX_DEV below.

typedef struct _IP_429II_TX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_TX_DEV, *PIP_429II_TX_DEV;

 Embedded Solutions Page 17 of 25

IOCTL_IP_429II_GET_RXD_DATA_DEV1_1
Function: Write to Device 1 Channel 1 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_GET_RXD_DATA_DEV1_2
Function: Write to Device 1 Channel 2 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_SET_CNTL_DEV1
Function: Write to Device 1 control register
Input: IP_429II_CONTROL
Output: none
Notes: Structure for 429 interface device options. Speed, Parity, masking etc.

typedef struct _IP_429II_CONTROL
{
 BOOLEAN SDEnable1;
 SD_COMPARE SDMatch1;
 BOOLEAN SDEnable2;
 SD_COMPARE SDMatch2;
 BOOLEAN TransParEn;
 BOOLEAN ExtLB;
 BOOLEAN ParityTest;
 BOOLEAN Tx12_5K;
 BOOLEAN Rx12_5K;
 BOOLEAN WordLength25;
} IP_429II_CONTROL, *PIP_429II_CONTROL;

 Embedded Solutions Page 18 of 25

IOCTL_IP_429II_SET_TXD_32_DEV1
Function: Write to Device 1 as a long word
Input: ULONG
Output: none
Notes: Write to both halves with one call using the carrier auto conversion

IOCTL_IP_429II_GET_RXD_32_DEV1_1
Function: Read from Device 1 Channel 1 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_GET_RXD_32_DEV1_2
Function: Read from Device 1 Channel 2 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_SET_TXD_DATA_DEV2
Function: Write to Device 2 upper and lower transmit data
Input: IP_429II_TX_DEV
Output: none
Notes: See the definition of IP_429II_TX_DEV below.

typedef struct _IP_429II_TX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_TX_DEV, *PIP_429II_TX_DEV;

 Embedded Solutions Page 19 of 25

IOCTL_IP_429II_GET_RXD_DATA_DEV2_1
Function: Write to Device 2 Channel 1 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_GET_RXD_DATA_DEV2_2
Function: Write to Device 2 Channel 2 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_SET_CNTL_DEV2
Function: Write to Device 2 control register
Input: IP_429II_CONTROL
Output: none
Notes: Structure for 429 interface device options. Speed, Parity, masking etc.

typedef struct _IP_429II_CONTROL
{
 BOOLEAN SDEnable1;
 SD_COMPARE SDMatch1;
 BOOLEAN SDEnable2;
 SD_COMPARE SDMatch2;
 BOOLEAN TransParEn;
 BOOLEAN ExtLB;
 BOOLEAN ParityTest;
 BOOLEAN Tx12_5K;
 BOOLEAN Rx12_5K;
 BOOLEAN WordLength25;
} IP_429II_CONTROL, *PIP_429II_CONTROL;

 Embedded Solutions Page 20 of 25

IOCTL_IP_429II_SET_TXD_32_DEV2
Function: Write to Device 2 as a long word
Input: ULONG
Output: none
Notes: Write to both halves with one call using the carrier auto conversion

IOCTL_IP_429II_GET_RXD_32_DEV2_1
Function: Read from Device 2 Channel 1 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_GET_RXD_32_DEV2_2
Function: Read from Device 2 Channel 2 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_SET_TXD_DATA_DEV3
Function: Write to Device 3 upper and lower transmit data
Input: IP_429II_TX_DEV
Output: none
Notes: See the definition of IP_429II_TX_DEV below.

typedef struct _IP_429II_TX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_TX_DEV, *PIP_429II_TX_DEV;

 Embedded Solutions Page 21 of 25

IOCTL_IP_429II_GET_RXD_DATA_DEV3_1
Function: Write to Device 3 Channel 1 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_GET_RXD_DATA_DEV3_2
Function: Write to Device 3 Channel 2 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_SET_CNTL_DEV3
Function: Write to Device 3 control register
Input: IP_429II_CONTROL
Output: none
Notes: Structure for 429 interface device options. Speed, Parity, masking etc.

typedef struct _IP_429II_CONTROL
{
 BOOLEAN SDEnable1;
 SD_COMPARE SDMatch1;
 BOOLEAN SDEnable2;
 SD_COMPARE SDMatch2;
 BOOLEAN TransParEn;
 BOOLEAN ExtLB;
 BOOLEAN ParityTest;
 BOOLEAN Tx12_5K;
 BOOLEAN Rx12_5K;
 BOOLEAN WordLength25;
} IP_429II_CONTROL, *PIP_429II_CONTROL;

 Embedded Solutions Page 22 of 25

IOCTL_IP_429II_SET_TXD_32_DEV3
Function: Write to Device 3 as a long word
Input: ULONG
Output: none
Notes: Write to both halves with one call using the carrier auto conversion

IOCTL_IP_429II_GET_RXD_32_DEV3_1
Function: Read from Device 3 Channel 1 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_GET_RXD_32_DEV3_2
Function: Read from Device 3 Channel 2 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_SET_TXD_DATA_DEV4
Function: Write to Device 4 upper and lower transmit data
Input: IP_429II_TX_DEV
Output: none
Notes: See the definition of IP_429II_TX_DEV below.

typedef struct _IP_429II_TX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_TX_DEV, *PIP_429II_TX_DEV;

 Embedded Solutions Page 23 of 25

IOCTL_IP_429II_GET_RXD_DATA_DEV4_1
Function: Write to Device 4 Channel 1 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_GET_RXD_DATA_DEV4_2
Function: Write to Device 4 Channel 2 upper and lower transmit data
Input: none
Output: IP_429II_RX_DEV
Notes:

typedef struct _IP_429II_RX_DEV
{
 USHORT LowerData;
 USHORT UpperData;
} IP_429II_RX_DEV, *PIP_429II_RX_DEV;

IOCTL_IP_429II_SET_CNTL_DEV4
Function: Write to Device 4 control register
Input: IP_429II_CONTROL
Output: none
Notes: Structure for 429 interface device options. Speed, Parity, masking etc.

typedef struct _IP_429II_CONTROL
{
 BOOLEAN SDEnable1;
 SD_COMPARE SDMatch1;
 BOOLEAN SDEnable2;
 SD_COMPARE SDMatch2;
 BOOLEAN TransParEn;
 BOOLEAN ExtLB;
 BOOLEAN ParityTest;
 BOOLEAN Tx12_5K;
 BOOLEAN Rx12_5K;
 BOOLEAN WordLength25;
} IP_429II_CONTROL, *PIP_429II_CONTROL;

 Embedded Solutions Page 24 of 25

IOCTL_IP_429II_SET_TXD_32_DEV4
Function: Write to Device 4 as a long word
Input: ULONG
Output: none
Notes: Write to both halves with one call using the carrier auto conversion

IOCTL_IP_429II_GET_RXD_32_DEV4_1
Function: Read from Device 4 Channel 1 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

IOCTL_IP_429II_GET_RXD_32_DEV1_2
Function: Read from Device 4 Channel 2 as a long word
Input: none
Output: ULONG
Notes: Read from both halves with one call using the carrier auto conversion. In self-
test mode data from the channel is inverted.

 Embedded Solutions Page 25 of 25

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use and service and in
its original, unmodified condition, for a period of one year from the time of purchase. If the product is
found to be defective within the terms of this warranty, Dynamic Engineering's sole responsibility shall be
to repair, or at Dynamic Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that set forth herein.
Dynamic Engineering disclaims and excludes all other product warranties and product liability, expressed
or implied, including but not limited to any implied warranties of merchantability or fitness for a particular
purpose or use, liability for negligence in manufacture or shipment of product, liability for injury to
persons or property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life support devices
or systems without the express written approval of the president of Dynamic Engineering.

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault. The driver has
gone through extensive testing and in most cases it will be “cockpit error” rather than an error with the
driver. When you are sure or at least willing to pay to have someone help then call the Customer
Service Department and arrange to speak with an engineer. We will work with you to determine the
cause of the issue. If the issue is one of a defective driver we will correct the problem and provide an
updated module(s) to you [no cost]. If the issue is of the customer’s making [anything that is not the
driver] the engineering time will be invoiced to the customer. Pre-approval may be required in some
cases depending on the customer’s invoicing policy.

Support
The software described in this manual is provided at no cost to cl ients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

