
DYNAMIC ENGINEERING

150 DuBois, Suite B & C

Santa Cruz, CA 95060

(831) 457-8891

https://www.dyneng.com

sales@dyneng.com

Est. 1988

PMC-BiSerial-VI-UART

Linux Documentation

Developed/Tested on Linux Kernel

v. 5.15.0-139-generic

Revision 01p4 5/9/25

Corresponding Hardware: Revision 06+
PMC 10-2015-0606/07

FLASH 0301

https://www.dyneng.com/
https://www.dyneng.com/
mailto:dedra@dyneng.com
mailto:dedra@dyneng.com

 Embedded Solutions Page 2

PMC-BiSerial-VI-UART

Linux Device Driver

Dynamic Engineering

150 DuBois, Suite B & C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to Dynamic

Engineering. It has been supplied in confidence and the recipient, by

accepting this material, agrees that the subject matter will not be copied

or reproduced, in whole or in part, nor its contents revealed in any

manner or to any person except to meet the purpose for which it was

delivered.

Dynamic Engineering has made every effort to ensure that this manual

is accurate and complete. Still, the company reserves the right to make

improvements or changes in the product described in this document at

any time and without notice. Furthermore, Dynamic Engineering

assumes no liability arising out of the application or use of the device

described herein.

The electronic equipment described herein generates, uses, and can

radiate radio frequency energy. Operation of this equipment in a

residential area is likely to cause radio interference, in which case the

user, at his own expense, will be required to take whatever measures

may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical

components in life support devices or systems without the express

written approval of the president of Dynamic Engineering.

This product has been designed to operate with PMC carriers and

compatible user-provided equipment. Connection of incompatible

hardware is likely to cause serious damage.

©2025 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective

manufactures.

 Embedded Solutions Page 3

INTRODUCTION 5

DRIVER INSTALLATION 5

DRIVER SOFTWARE DESCRIPTION 7

Modes of Operation - UART 8
Unpacked 8
Packed 8
Packet 8
Alternate Packet 8
Test 8

Modes of Operation – Parallel 9
Direction 9
Polarity 9
Edge Level 9

IO Controls 10
DE_GET_BD_INFO 10
DE_PLL 10
DE_CONFIG_PT 11
DE_GET_STATS 12
DE_REG 12
DE_SEND_BREAK 13
DE_FIFO_READ 13
DE_FIFO_WRITE 13
DE_FORCE_INT 13
DE_REG_WAIT 13
DE_WAIT_INT 14
PAR_GPIO_GET_AND_CLEAR_ISR_STATUS 14
PAR_GPIO_SET_PORTS 14
PAR_GPIO_GET_PORTS 15
PAR_GPIO_SET_MINTEN 15
PAR_GPIO_SET_DATA_OUT 15
PAR_GPIO_GET_DATA_OUT 16
PAR_GPIO_SET_DIR 16
PAR_GPIO_GET_DIR 16
PAR_GPIO_SET_POL 16
PAR_GPIO_GET_POL 16
PAR_GPIO_SET_EDGE_LEVEL 16
PAR_GPIO_GET_EDGE_LEVEL 17
PAR_GPIO_SET_INT_EN 17

Table of Contents

 Embedded Solutions Page 4

PAR_GPIO_GET_INT_EN 17
PAR_GPIO_READ_DIRECT 17
PAR_GPIO_READ_FILTERED 17
PAR_GPIO_SET_COS_RISING_STAT 18
PAR_GPIO_GET_COS_RISING_STAT 18
PAR_GPIO_SET_COS_FALLING_STAT 18
PAR_GPIO_GET_COS_FALLING_STAT 18
PAR_GPIO_SET_COS_RISING_EN 19
PAR_GPIO_GET_COS_RISING_EN 19
PAR_GPIO_SET_COS_FALLING_EN 19
PAR_GPIO_GET_COS_FALLING_EN 19
PAR_GPIO_SET_HALFDIV 19
PAR_GPIO_GET_HALFDIV 20
PAR_GPIO_SET_TERM 20
PAR_GPIO_GET_TERM 20

Open() 21

Close() 21

Read() and Write() 21

File Operations Structs 22

USER SOFTWARE DESCRIPTION 22

UserAp Installation 23

WARRANTY AND REPAIR 25

Service Policy 25
Support 25

For Service Contact: 25

 Embedded Solutions Page 5

Introduction

The PMC-BiSerial-VI is an eight channel, full duplex UART interface card supporting

various modes of operation. All channels are supported with their own DMA engines

(For a detailed description of the hardware including register definitions, see HW User

Manual).

The UART functionality is implemented in a Xilinx FPGA. It implements a PCI

interface, FIFOs and protocol control/status for 8 channels. Each channel has separate

255 x 32 bit receive data and transmit data FIFOs.

New with Flash revision 3.1 is a programmable parallel port. The parallel port can be

mapped in/out to replace unused UART ports. GPIO features including COS interrupts.

When the PmcBis6Uart Driver is installed a device file for the Parallel I/O port as well as

a device file for each of the 8 UART I/O ports will be created.

Driver Installation

Kernel drivers must be compiled to run on each specific kernel. As such, we distribute all

the source code for the driver along with a make file (this will make the .ko file) and

install script (this installs the driver and creates the device nodes for applications to

access the ports “/dev/ deUart_<x>” & “/dev/deGPIO_<x>”, where <x> can be replaced

by the port number 0-8, and finally an uninstall script (this uninstalls the driver and

removes all device nodes).

Note: the driver does not install permanently with the current script. As such, the driver

will need to be reinstalled if the computer is rebooted. If you would like the driver

installed permanently, and you are having any difficulty with the process using a standard

Linux distribution such as Ubuntu, CentOS, or RedHat, please contact us and we can

assist you with this procedure.

In additional to standard operation mode, the driver supports both DEBUG and TRACE

modes:

• DEBUG mode logs function or IOCTL failures to the kernel log, helping identify

where failures occur.

• TRACE mode logs all IOCTL calls—regardless of success—along with their

input or output data, depending on whether the call is a SET or GET. This is

helpful when diagnosing unexpected behavior.

 Embedded Solutions Page 6

The provided de_BiSerUart.h and de_common.h files are the C header files that define

the Application Program Interface (API) for the BiSerUart driver. These files are

required at compile time by any application that wishes to interface with the driver and

for compiling the driver. The UserAp sample software package is written in C++ (with

some legacy C embedded in it) to demonstrate how to use the C API within a C++

environment. The other example software is written in C.

To install the PmcBis6Uart driver, first extract the driver package

"de_BiSerUartv1_0_4.zip" into your desired directory. Using the command prompt,

navigate to the ".../de_BiSerUartv1_0_3_Par/Driver/build" directory, then run one of the

following commands depending on the mode you want to driver to run in.

Enabling Modes
To enable these modes during driver compilation, use the following commands:

• Standard Operation mode:

“sudo make”

• Enable DEBUG mode:

“sudo make DEBUG_MODE=1”

• Enable TRACE mode:

“sudo make TRACE_MODE=”1

• Enable both DEBUG and TRACE modes:

“sudo make DEBUG_MODE=1 TRACE_MODE=1”

*Ignore BTF generation, unless using vmlinux for additional debugging

Once the build completes successfully, make the installation script executable by running

"sudo chmod +x Install"

 and install the driver by executing the following command

"sudo ./Install"

Upon successful installation, the following messages will be printed to the screen.

"7 device Nodes created /dev/deUart_<0-7>"

"1 device Nodes created /dev/deGPIO_8"

To uninstall the driver, make the uninstall script executable with

"sudo chmod +x UnInstall"

Remove the driver by running

"sudo ./UnInstall"

Upon successful uninstallation, the following messages are printed to the screen.

"de_BiSerUart driver removed"

"device nodes removed"

 Embedded Solutions Page 7

Driver Software Description

The driver supports full duplex operation on all 8 channels.

The board’s default configuration initializes all ports in UART mode upon startup.

Individual ports may be reconfigured to operate in either UART or Parallel mode by

setting the appropriate bits in the REG_PP_MUX register.

For details, refer to the IOCTL command: "IOCTL_PAR_GPIO_SET_PORTS".

A default UART configuration is applied when ports are opened for the first time. These

default settings are defined in the driver header file, de_BiSerUart.h. The default I/O port

config setting is named de_default_pt_config. The default config parameters can be

customized for a particular application, and the driver recompiled. This may eliminate the

need for invoking the config ioctl.

Applicable UART I/O configuration parameters include blocking timeout, baud-rate,

mode, parity, flow control, inter-char timer (utilized for packet modes), and various

UART options (data size, stop bits, and terminations). Blocking timeout provides a

mechanism to timeout on blocking operations.

Default UART I/O configuration is as follows: Blocking timeout on reads = 5 sec. (if

opened as blocking), 115200 baud-rate, packed mode of operation, even parity, flow

control enabled (CTS/RTS), auto compute inter-char timer based upon baud-rate, 8-bit

data, 1 stop bit, terminate CTS and Rx signals.

 Embedded Solutions Page 8

Modes of Operation - UART

The HW and SW support 5 modes of UART operation on a port by port basis, all modes

accept (writes) and return (reads) a packed byte stream. Please note I/O limitations

between ports populating different platform types (little endian to/from big endian). If

required for specific customer applications, these limitations can be addressed/resolved

for an additional fee.

Unpacked

Prepends or strips 3 fill bytes for each data byte, max frame size = 255 bytes. Size does

not have to be a multiple of 4 bytes. I/O between big/little endian platforms not

supported.

Packed

Max frame size = 1020 bytes, size must be a multiple of 4 bytes

Packet

Packed data, max frame size = 1020 bytes, size does not have to be a multiple of 4 bytes,

however for non-aligned receive packets least significant bytes are filled with zeros to

force alignment. Non-aligned (not a multiple of 4 bytes) I/O between big/little endian

platform not supported.

Alternate Packet

Prepends/strips control byte for every 3 bytes of data max frame size = 765 bytes. Does

not have to be a multiple of 4 bytes, and received packet will contain no fill bytes. This

mode is not supported on big endian platforms.

Test

Raw mode of operation supporting test.

When operating in either of the packet modes, a read will return the next available packed

irrespective of size. Thus, reads should be issued with a size of DE_MAX_FRAME.

Please see HW manual for further discussion of advantages/disadvantages of each mode.

 Embedded Solutions Page 9

Modes of Operation – Parallel

Each UART port, when configured in Parallel mode, contributes 4 data bit lanes to the

overall parallel interface. With all 8 UART ports set to Parallel mode, this enables a

maximum parallel bus width of 32 bits. The behavior and state of each bit lane are

controlled through dedicated GPIO registers, accessible via corresponding SET and GET

ioctl commands.

Each UART port’s mode—UART or Parallel—is controlled by the first 8 bits of the

REG_PP_MUX register. A bit value of 1 in this register sets the corresponding port to

Parallel mode, while a value of 0 sets it to UART mode. This configuration is applied

using the PAR_GPIO_SET_PORTS ioctl call.

Bit lanes are assigned sequentially based on which UART ports are active and configured

for Parallel mode. If not all ports are in use or not all are configured as Parallel, gaps may

appear in the bit stream. This arrangement allows flexible partial configurations but may

require software awareness of active port mappings when interpreting parallel data.

Direction

Each bit in the parallel port can be configured as either an output, driving a signal from

the board, or an input, receiving a signal from external sources.

Polarity

Each received bit can be individually configured to remain unchanged or to be inverted.

This setting applies only to input data and does not affect output signals. Refer to the

Filtered Data registers for more details.

Edge Level

Each bit in the parallel port input can be configured as either edge-sensitive or level-

sensitive. When a bit is set, it is treated as edge-sensitive, responding only to transitions;

when cleared, it is treated as level-sensitive, responding to the current logic level. This

configuration affects only input data and has no impact on output behavior.

 Embedded Solutions Page 10

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a

single Device Node, which controls a single board or I/O channel. IOCTLs are called

using the Linux function Ioctl(int fd, unsigned long request, …), and passing in the file

descriptor to the device opened with Open(const char *pathname, int flags).

The IOCTLs defined for the BiSerUart driver are described below:

DE_GET_BD_INFO

Function: Returns struct containing Xilinx flash rev (maj/min), type id, and user switch value.

Input: None

Output: de_rev_t structure

Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has been

selected by the user (see the board silk screen for bit position and polarity). Revision

Major and Revision Minor represent the current Flash revision. The design is the design

number for a particular version of the board based.
// Board information
typedef struct de_rev {
 uint8_t major;

 uint8_t minor;

 uint8_t design;

 uint8_t dips;
} de_rev_t;

DE_PLL

Function: Writes or Reads to the internal registers of the PLL.

Input: de_pll_cfg_t structure (if writing)

Output: de_pll_cfg_t structure (if reading)

Notes: The de_pll_cfg has two elements: op – which is an enum type with three possible

values, DE_GET_OP, DE_SET_OP, and DE_RMW_OP. The first is used to read the

PLL the second is to write. The third is not used, but could be used to do

read/write/update (and is used in other ioctls). The second, dat, is an array of 40 bytes

containing the PLL register data to write or that is read based on the op command.
// Structures for IOCTLs

typedef enum de_op {
 DE_GET_OP = 0,
 DE_SET_OP = 1,
 DE_RMW_OP = 2
} de_op_t;
typedef struct de_pll_cfg {
 de_opt_t op;
 unsigned char dat[PLL_MESSAGE_SIZE];
} de_pll_cfg_t;

 Embedded Solutions Page 11

DE_CONFIG_PT

Function: Reads/Writes the main configuration parameters for each port (depending one which

device node was opened).

Input: de_port_cfg_t structure

Output: de_port_cfg_t structure

Notes: This ioctl is used to configure each ports primary settings. As with the PLL above,

this requires the de_op_t to say if the configuration is being read or written.
// Port Configuration

typedef struct de_port_cfg {
 de_op_t op;

 long blocking_to; //if in non-blocking user to pick timeout in milliseconds

 unsigned int br_clk_src; // 0 = 32 Mhz osc., 1 = PLL

 unsigned int baud_rate; //

 unsigned char mode; // (see de_mode_t below)

 unsigned char parity; // (see de_parity_t below)

 unsigned char flow_ctl; //(see flow_ctl_t below)

 unsigned int ic_time; //

 unsigned options; //(see de_opts_t below and ‘or’ the values together to set configuration)
} de_port_cfg_t;

typedef enum de_mode {
 DE_UNPACKED = 1,

 DE_PACKED = 2,

 DE_PACKET = 3,

 DE_ALT_PACKET = 4,

 DE_TX_TEST = 5,
} de_mode_t;

typedef enum de_parity {
 DE_NO_PARITY = 0,

 DE_EVEN_PARITY = 1,

 DE_ODD_PARITY = 2,

 DE_STICK_PARITY = 3,
} de_parity_t;

typedef enum de_flow {
 DE_NO_FLOW = 0,

 DE_NORM_FLOW = 1,

 DE_INVT_FLOW = 2,
} de_flow_t;

typedef enum de_opts {
 DE_8_BIT = 0x01,

 DE_2_STOP = 0x02,

 DE__CTS_TERM = 0x04,

 DE_RTS_TERM = 0x08,

 DE_RX_TERM = 0x10,

 DE_TX_TERM = 0x20,

 DE_LOOPBACK = 0x40,
} de_opts_t;

 Embedded Solutions Page 12

DE_GET_STATS

Function: This ioctl fetches and possibly clears stats

Input: de_get_stats_t structure

Output: de_get_stats_t structure
// Board information

typedef struct de_get_stats {
 int clear;
 de_pt_stats_t stats; // (see de_pt_stats_t below)
} de_get_stats_t;

typedef struct de_pt_stats {
 unsigned int frame_err_cnt;
 unsigned int re_ovfl_cnt;

 unsigned int parity_err_cnt;

 unsigned int break_cnt;

 unsigned int last_rx_err;

 unsigned int rx_cnt;

 unsigned int tx_cnt;
} de_pt_stats_t;

DE_REG

Function: Reads/Writes any register value.

Input: de_reg_cmd_t structure

Output: de_reg_cmd_t structure

Notes: The struct uses the same op code above to determine if reading or writing. The

de_reg_cmd_t has five components, the first is the op code, the second is the base address

used to determine of you are accessing the board registers or the ports registers, the third

is the value read or written, the fourth element is the offset for the specific register you

are trying to read/write. The final element can be used for a RMW mask def in de_opt_t.

typedef struct de_reg_cmd {
 de_op_t op;

 de_reg_off_t base; // determines if accessing port or board level registers for this device node

 unsigned int val; // Value to be written or value read back

 unsigned int reg; // #define offsets from header file use here to say which register

 unsigned int mask; //can be used with DE_RMW_OP
} de_reg_cmd_t;

typedef enum de_reg_off {
 DE_REG_BASE = 0,

 DE_REG_PT = 1,

 DE_REG_INV = 2,
} de_reg_off_t;

 Embedded Solutions Page 13

 DE_SEND_BREAK

Function: Sends break

Input: de_break_cmd_t

Output: None

Notes: RETURNS 0 upon success, -EINVAL on failure.

typedef struct de_break_cmd_t {
 unsigned int period;
} de_reg_cmd_t;

DE_FIFO_READ

Function: This reads data from the FIFO 32-bits at a time

Input: None

Output: uint32_t

Notes: None

DE_FIFO_WRITE

Function: Writes data to FIFO 32-bits at a time

Input: uint_32

Output: None

Notes: None

DE_FORCE_INT

Function: This will cause the device to trigger an interrupt.

Input: None

Output: None

Notes: This is primarily used for testing the boards interrupts

DE_REG_WAIT

Function: Registers the calling process to wait for an interrupt.

Input: None

Output: None

Notes: This IOCTL sets an internal flag indicating that the calling process is waiting for

an interrupt from the device. When an interrupt occurs on the parallel bus, the driver first

checks the device's interrupt status registers to determine whether to run the interrupt

service routine (ISR). After the ISR completes, it checks the waiting flag for the

registered instance. If the flag is set, the driver signals the waiting process and clears the

flag to indicate the interrupt has been acknowledged. This ensures that only processes

actively waiting are notified after a valid interrupt

 Embedded Solutions Page 14

DE_WAIT_INT

Function: Waits for an interrupt event to be signaled by the driver.

Input: None

Output: None

Notes: This IOCTL blocks the calling process until either the interrupt wait flag is

cleared (signaled by the driver after an interrupt) or the specified timeout period elapses.

Internally, a semaphore is used to implement the wait. If the flag is not cleared within the

given time, the function returns, allowing the calling application to handle the timeout

condition as needed.

PAR_GPIO_GET_AND_CLEAR_ISR_STATUS

Function: Returns and clears the interrupt status and registers.

Input: None

Output: PAR_TTL_GPIO_ISR_STAT structure

Notes: Since the interrupt service routine may have fired multiple times, this returns the

cumulative values, or-ed together, of interrupt status and registers read in the interrupt

service routine. This IOCTL will clear the stored values.

typedef struct _PAR_GPIO_ISR_STAT {

 ULONG InterruptStatus;

 ULONG RisingData;

 ULONG FallingData;

 ULONG FilteredData;

 ULONG DirectData;

} PAR_GPIO_ISR_STAT, * PPAR_GPIO_ISR_STAT;

PAR_GPIO_SET_PORTS

Function: Select mode of operation for each port. UART or Parallel.

Input: Struct - PAR_GPIO_TYPE

Output: None

Notes: Default is UART operation, HW resets to this state and driver initializes as well.

 Embedded Solutions Page 15

PAR_GPIO_GET_PORTS

Function: Reads and returns a single 32-bit data word from the Direction Register.

Input: None

Output: Stuct - PAR_GPIO_TYPE

Notes:

typedef struct _PAR_GPIO_TYPE {

 PortType PORT1; // Set Port to UART or Parallel

 PortType PORT2; // Set Port to UART or Parallel

 PortType PORT3; // Set Port to UART or Parallel

 PortType PORT4; // Set Port to UART or Parallel

 PortType PORT5; // Set Port to UART or Parallel

 PortType PORT6; // Set Port to UART or Parallel

 PortType PORT7; // Set Port to UART or Parallel

 PortType PORT8; // Set Port to UART or Parallel

} PAR_GPIO_TYPE, * PPAR_GPIO_TYPE;

PAR_GPIO_SET_MINTEN

Function: Enable or Disable Master Interrupt Enable for Parallel Port operation

Input: Struct - PAR_GPIO_MINT_EN

Output: None

Notes: The user app must call IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS

after enabling master interrupts to clear out any older unprocessed interrupt status bit. No

effect on UART interrupts. Separate enables for Rising, Falling, Level types. ISR

returns with Rising and Falling status captured and cleared plus interrupts returned to the

enabled state. Level based interrupts are left not enabled requiring the user to re-enable

when the IO is in the correct pre-trigger state.

typedef struct _PAR_GPIO_MINT_EN {

 // TRUE = Enabled, Default is Disabled

 BOOLEAN MasterCosRintEn; // Master for Rising Interrupts

 BOOLEAN MasterCosFintEn; // Master for Falling Interrupts

 BOOLEAN MasterCosLintEn; // Master for Level Interrupts

} PAR_GPIO_MINT_EN, * PPAR_GPIO_MINT_EN;

PAR_GPIO_SET_DATA_OUT

Function: Writes a single 32-bit data-word to the Data Transmit Register

Input: ULONG

Output: None

Notes: IOCTL_PAR_GPIO_SET_DIR must also be set to make this value the output

value.

 Embedded Solutions Page 16

PAR_GPIO_GET_DATA_OUT

Function: Reads and returns a single 32-bit data word from the Data Register.

Input: None

Output: LONG

Notes: This is the register read-back and will match the SET data. Use Direct or Filtered

registers to obtain the state of the IO.

PAR_GPIO_SET_DIR

Function: Writes a single 32-bit data-word to the Direction Register

Input: ULONG

Output: None

Notes: Setting a ‘1’ in this register will make this bit an output. Setting a ‘0’ will make

the bit an input.

PAR_GPIO_GET_DIR

Function: Reads and returns a single 32-bit data word from the Direction Register.

Input: None

Output: ULONG

PAR_GPIO_SET_POL

Function: Writes a single 32-bit data-word to the Polarity Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the bit will be inverted. This only affects input data, not

output data. See the Filtered Data registers.

PAR_GPIO_GET_POL

Function: Reads and returns a single 32-bit data word from the Polarity Register.

Input: None

Output: ULONG

Notes:

PAR_GPIO_SET_EDGE_LEVEL

Function: Writes a single 32-bit data-word to the EdgeLevel Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the bit will be treated as edge sensitive. Only affects input

side data, not the driven data. For each bit cleared, the data is treated as level sensitive.

 Embedded Solutions Page 17

PAR_GPIO_GET_EDGE_LEVEL

Function: Writes a single 32-bit data-word to the EdgeLevel Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the bit will be treated as edge sensitive. Only affects input

side data, not the driven data. For each bit cleared, the data is treated as level sensitive.

PAR_GPIO_SET_INT_EN

Function: Writes a single 32-bit data-word to the Interrupt Enable Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the bit the associated interrupt will be enabled. Used for

both Level and Edge defined processing. See Rising and Falling for additional options.

PAR_GPIO_GET_INT_EN

Function: Reads and returns a single 32-bit data word from the Interrupt Enable

Input: None

Output: ULONG

Notes:

PAR_GPIO_READ_DIRECT

Function: Reads and returns a single 32-bit data word from the IO port.

Input: None

Output: ULONG

Notes: Direct data is synchronized but not filtered in any way. Get the state of the IO

(whether defined as output or input).

PAR_GPIO_READ_FILTERED

Function: Reads and returns a single 32-bit data word from the IO port after

Input: None

Output: ULONG

Notes: Direct data is synchronized but not filtered in any way. Get the state of the IO

(whether defined as output or input).

 Embedded Solutions Page 18

PAR_GPIO_SET_COS_RISING_STAT

Function: Writes a single 32-bit data-word to the Rising Status Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the corresponding bit in the Rising Status Register is

cleared. If interrupts are being used, the COS Rising value will be captured and the

register bits will be automatically cleared in the interrupt service routine. The value can

be retrieved with the IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

PAR_GPIO_GET_COS_RISING_STAT

Function: Reads and returns a single 32-bit data word from the Rising Status Register.

Input: None

Output: ULONG

Notes: When an IO bit programmed as Edge and Rising transitions from low to high the

status bit is set. If the corresponding Interrupt Enable is also set an interrupt is generated.

Clear by writing back with the bit(s) set. If interrupts are being used, the COS Rising

value will be captured and the register bits will be automatically cleared in the interrupt

service routine. The value captured can be retrieved with the

IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

PAR_GPIO_SET_COS_FALLING_STAT

Function: Writes a single 32-bit data-word to the Falling Status Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the corresponding bit in the Falling Status Register is

cleared. If interrupts are being used, the COS Falling value will be captured and the

register bits will be automatically cleared in the interrupt service routine. The value

captured can be retrieved with the

IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

PAR_GPIO_GET_COS_FALLING_STAT

Function: Reads and returns a single 32-bit data word from the Falling Status Register.

Input: None

Output: ULONG

Notes: When an IO bit programmed as Edge and Falling transitions from High to Low

the status bit is set. If the corresponding Interrupt Enable is also set an interrupt is

generated. Clear by writing back with the bit(s) set. If interrupts are being used, the COS

Falling value will be captured and the register bits will be automatically cleared in the

interrupt service routine. The value captured can be retrieved with the

IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

 Embedded Solutions Page 19

PAR_GPIO_SET_COS_RISING_EN

Function: Writes a single 32-bit data-word to the Rising Enable Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the corresponding IO bit is enabled to be captured for rising

edge transitions.

PAR_GPIO_GET_COS_RISING_EN

Function: Reads and returns a single 32-bit data word from the Rising Enable Register.

Input: None

Output: ULONG

Notes: Register read, will match current register value.

PAR_GPIO_SET_COS_FALLING_EN

Function: Writes a single 32-bit data-word to the Falling Enable Register

Input: ULONG

Output: None

Notes: For each bit set to ‘1’ the corresponding IO bit is enabled to be captured for

falling edge transitions.

PAR_GPIO_GET_COS_FALLING_EN

Function: Reads and returns a single 32-bit data word from the Falling Enable Register.

Input: None

Output: ULONG

Notes: Register read, will match current register value.

PAR_GPIO_SET_HALFDIV

Function: Writes a single 32-bit data-word to the Rising Enable Register

Input: ULONG

Output: None

Notes: Write to this register to define divider to apply to COS reference clock selected.

COS clock is Reference / 2N where N= 16 bits. Set upper bits to 0.

 Embedded Solutions Page 20

PAR_GPIO_GET_HALFDIV

Function: Reads and returns a single 32-bit data word from the HalfDiv Register

.Input: None

Output: ULONG

Notes: Write to this register to define divider to apply to COS reference clock selected.

COS clock is Reference / 2N where N= 16 bits. Set upper bits to 0.

PAR_GPIO_SET_TERM

Function: Writes a single 32-bit data-word to the Termination Register

.Input: ULONG

Output: None

Notes: Setting a ‘1’ in this register will terminate this bit. Setting a ‘0’ will disable

termination on this bit. Normally, bits programmed as inputs are terminated. Check your

system design as the termination may be supplied in the cable.

PAR_GPIO_GET_TERM

Function: Reads and returns a single 32-bit data word from the Termination Register.

.Input: None

Output: ULONG

Notes:

 Embedded Solutions Page 21

Open()

UART
All ioctl, read, write, and close operations for UART ports use the file descriptor (fd)

returned from a standard open() system call. This open() must be passed the UART

device node (e.g., "/dev/deUart_n"). The only supported flag during open is

O_NONBLOCK, which enables non-blocking I/O behavior.

However, the effective blocking behavior can be controlled using the DE_CONFIG_PT

ioctl, by setting the blocking_to parameter in the provided configuration structure. This

allows the driver to block internally for a defined timeout even when O_NONBLOCK is

used. This behavior is tied to the dyneng_UART_open() function, defined in the driver's

file_operations struct for UART devices.

Parallel
The Parallel port is opened similarly using the open() system call with the appropriate

device node (e.g., "/dev/deGPIO_8").

Unlike UART, the Parallel port driver does not implement read() or write() operations.

Instead, interaction is handled via ioctl calls defined in dyneng_PAR_ioctl().

Close()

For both UART and Parallel devices, the close() system call is used to release the file

descriptor returned by open(). This is handled in the driver via the release function in

their respective file_operations structures (dyneng_UART_release or

dyneng_PAR_release).

Read() and Write()

UART
Data is transmitted or received using the standard Linux read() and write() system calls.

These calls interface with the hardware via the driver’s dyneng_read() and

dyneng_write() functions. The maximum buffer size for a read or write is constrained by

the DE_MAX_FRAME macro, and potentially limited further based on the current mode

of operation selected through configuration.

If errors occur during read or write operations, it is recommended to inspect the kernel

log using dmesg to identify the cause. The driver includes detailed debug messages,

especially useful when debug or trace modes are enabled.

Parallel
The Parallel port does not support read() or write() operations. All data exchange or

configuration must be performed through ioctl calls.

 Embedded Solutions Page 22

File Operations Structs

struct file_operations dyneng_UART_fops = {

 .owner = THIS_MODULE,

 .unlocked_ioctl = dyneng_ioctl,

 .read = dyneng_read,

 .write = dyneng_write,

 .open = dyneng_UART_open,

 .release = dyneng_UART_release,

};

struct file_operations dyneng_PAR_fops = {

 .owner = THIS_MODULE,

 .unlocked_ioctl = dyneng_PAR_ioctl,

 .open = dyneng_PAR_open,

 .release = dyneng_PAR_release,

};

User Software Description

We have provided a UserAp, which serves as a stand-alone code set with a simple and

powerful menu plus a series of tests that can be run on the installed hardware. Each of

the tests execute calls to the driver, pass parameters and structures, and get results back.

With the sequence of calls demonstrated, the functions of the hardware are utilized for

loop-back testing. The software is used for manufacturing testing at Dynamic

Engineering. The test software can be ported to your application to provide a running

start. The tests are simple and will quickly demonstrate the end-to-end operation of your

application making calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure

occurs and stop or to continue, to program a set number of loops to execute and more.

The user can add tests to the provided test suite to try out application ideas before

committing to your system configuration. In many cases the test configuration will allow

faster debugging in a more controlled environment before integrating with the rest of the

system.

 Embedded Solutions Page 23

UserAp Installation

To install the UserAp, create and move to a build directory inside the UserAp folder

using the following command.

“mkdir build”

“cd build”

Geneate the Makefile by calling cmake on the UserApp directory containing the file

CMakeLists.txt.

“cmake ..”

Create the executable file by calling.

“sudo make:

Upon completion an executable called “biserialVIUart_user_app_cpp” will be present

inside the build directory.

In addition to the UserAp, there are a few smaller sample applications included to

demonstrate some of the basic means of using the device (open, config, read, write,

statistics).

The three sample applications are de_IoApp.c, de_IoAppS.c, de_IoctlApp.c, and

demonstrate configuration, ioctl invocation, and I/O in the supported modes, respectively.

Various modes of operation and options maybe validated/demonstrated by changing port

configuration parameters in the application and recompiling.

Specifically, de_IoApp.c is a board to board test. It requires two boards to be installed in

the platform and connected via a board-to-board test fixture. A minimum of two instances

must be invoked, first the reader, then the writer within 5 seconds. The applications run

asynchronously to one another. Port 0 is connected to port 8, port 1 to port 9, and so on

via test fixture.

de_IoAppS.c is a single board test. Ports are looped back to themselves externally via

single board test fixture. The application first writes to the specified port, and then reads

received data. Data integrity is then validated.

 Embedded Solutions Page 24

Invocation parameters

The three smaller I/O application invocation paramaters are as follows:

dyn_io - 2 board test

./dyn_io 1 0 baud-rate frame_len num_iterations //(reader, port 0, board 1)

./dyn_io 0 8 baud-rate frame_len num_iterations //(writer, port 8, board 2)

The first parameter specifies reader/writer. The second parameter is port number, third

parameter is baud-rate. Frame length is specified in bytes. Data is validated upon

reception. Application will execute for num_iterations, or until terminated due to an error

or interrupted via .

dyn_ioS - single board test

./dyn_ioS 0 baud-rate frame_len num_iterations //(port 0, board 1)

The first parameter specifies port. The second parameter is baud-rate followed by frame

length in bytes. Data is validated upon reception. Application will executedfor

num_iterations, or until terminated due to an error or interrupted via .

Note

This documentation will provide information about all calls made to the drivers, and how

the drivers interact with the device for each of these calls. For more detailed

information on the hardware implementation, refer to the PMC-BiSerial-VI-UART user

manual as appropriate (also referred to as the hardware manual).

 Embedded Solutions Page 25

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered and

options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.

The driver has gone through extensive testing, and in most cases it will be “cockpit error”

rather than an error with the driver. When you are sure or at least willing to pay to have

someone help then call or e-mail and arrange to work with an engineer. We will work

with you to determine the cause of the issue.

Support

The software described in this manual is provided at no cost to clients who have

purchased the corresponding hardware. Minimal support is included along with the

documentation. For help with integration into your project please contact

sales@dyneng.com for a support contract. Several options are available. With a contract

in place Dynamic Engineers can help with system debugging, special software

development, or whatever you need to get going.

For Service Contact:

Customer Service Department

Dynamic Engineering

150 DuBois Street, Suite B & C

Santa Cruz, CA 95060

831-457-8891

support@dyneng.com

All information provided is Copyright Dynamic Engineering

http://www.dyneng.com/warranty.html
mailto:sales@dyneng.com

